$3.924 / 2 \cdot 1.175 \cdot 0.603=52.14^{\circ}$ as compared to $[\alpha]_{\mathrm{D}}^{20} 52.06^{\circ}$ in distilled water [Riiber, Ber., 56, 2185 (1923)]. Evidently, the replacement of the displaceable hydrogen atom of glucose by a deuterium does not change the value of the specific rotation for the wave length of sodium light. Such a conclusion does not necessarily apply for very short wave lengths.
Frick Chemical Laboratory
Eugene Pacsu
Princeton University
Princeton, New Jersey Received February 5, 1934

ANALYSIS OF THE DISPERSION CURVES OF SUBSTITUTED PROPIONIC ACIDS

Sir:

It has been observed in this Laboratory that in homologous series of optically active configura-
levorotatory in alanine and in lactic acid and that they are of reverse sign in the levo iodo and dextro azido acids. Similar reversions of the partial rotations are observed in the configurationally related 2 -thio and 2 -sulfopropionic acids.

The direction and the values of the partial rotations were determined through the analysis of the rotatory dispersion curves in the visible and in the ultraviolet regions by a method previously described [P. A. Levene, A. Rothen and R. E. Marker, J. Chem. Physics, 1, 662 (1933)]. The details of the work, the dispersion curves, and the numerical values of the partial rotation will be published in the near future.
The Rockefeller Institute \quad P. A. Levene
for Medical Research New York, N. Y.

Received February 2, 1934

Substance	Rotation in the visible	$\begin{aligned} & \text { Groups } \mathrm{Y} \\ & \text { COOH, } \mathrm{CHO}, \mathrm{CH}_{2=1} \mathrm{CH} \\ & \text { Abs. band } \lambda_{y}, \mathrm{~A} . \end{aligned}$		Groups X $\mathrm{SH}, \mathrm{SO}_{3} \mathrm{H}, \mathrm{N}_{3}, \mathrm{NH}_{2}, \mathrm{OH}, \mathrm{I}$ bs. band λ_{x}, \AA. Sign of α_{y}	
<2-Thiopropionic acid	Dextro	2100	-	$\simeq 2400$	+
(2-Sulfopropionic acid	Dextro	2150	t	Schumann region	-
\{2-Azidopropionic acid	Levo	Distant U. V.	-	$\simeq 2830$	t
(2-Aminopropionic acid	Dextro	2100	$+$	Schumann region	-
1-Octene-3-ol	Dextro	Distant U. V.	$+$	Schumann region	-
(2-Hydroxyheptanoic aldehyde	Levo	3000	t	Schumann region	-
$\{$ Lactic acid	Dextro	2150	+	Schumann region	-
\{ 2-Iodopropionic acid	Dextro	$\simeq 2150$	-	~ 2840	t

tionally related substances, individual members may differ in the sign of their rotations in the visible, but the partial rotations of the significant chrornophoric group and of the rest of the molecule remain of the same sign. This is also often the case in configurationally related substances similar in structure, such as substances 5,6 and 7 of the table. Comparing the partial rotations of levo iodo and of dextro azido propionic acids, it was found that the partial rotation of the carboxyl in both cases is dextrorotatory and the partial rotations of the iodine atom and of the $\mathrm{N}_{3^{-}}$are both levo rotatory. Hence, it may be assumed that these two substances are configurationally related (and not levo iodo- and levo azidopropionic, as assumed by Freudenberg and Kuhn). Furthermore, inasmuch as dextro azidopropionic acid is correlated to levo alanine and this, in its turn, has been correlated to levo lactic acid, it may be assumed that levo lactic acid is correlated to dextro 2 -azido and hence to the levo 2 -iodo acid. It will be noticed from the table that the partial rotations of the carboxyl groups are

THE CONSTITUTION OF OESTRIN

Sir:
The work of Butenandt, et al., ${ }^{1}$ which demonstrated the presence of a phenanthrene system in the skeleton of the oestrin molecule, left indefinite the position of the five-membered ring which is also known to be present. The possible positions according to Butenandt for this ring were $8: 14,14: 13$, or $13: 12$, using the customary sterol nomenclature.

It does not seem to be generally realized that Butenandt's work, when taken in conjunction with the results obtained with unimolecular films of oestrin derivatives, offers a clear proof of the fact that the five-membered ring is in the same position as in the sterols, i. e., $14: 13$. Measurements made on models show the following minimal areas for the cross section of the possible structures.

Formula	Position of the five-membered ring	Minimal cross-sectional area, in sq. \AA A.
I	$8: 14$	39
II	$14: 13$	33
III	$13: 12$	38

(1) Butenandt, Weidlich and Thompson, Bey., 66, 601 (1933).

